STABILITY OF A VISCOELASTIC
INHOMOGENEOUS SHELL

V. D. Potapov UDC 624.071.4+539.411

Shells are considered for which the constants of viscoelasticity are random functions of curvi-
linear coordinates of the middie surface. Correlation functions are obtained for the first ap-
proximations of the deflection and the stress function, as well as the variance of the critical
time.

A peculiarity of shells subjected to compression under the conditions of unlimited creep is their "snap-
ping" at any load after the elapse of a longer or shorter time interval, called the critical time. Its magni-
tude depends on many factors, and in the first instance, on the characteristics of the elastic and viscous prop-
erties of the material. The latter, as is known [1], have a considerable scatter, being random functions of
the coordinates. As a result, the shell is nonhomogeneous, and this leads to redistribution of the forces in
the middle surface with time, and as a consequence, to variation in the critical time.

The stability of homogeneous shells in creep, in a geometrically nonlinear formulation, was consid-
ered in [2, 3].

We consider a viscoelastic thin shell the properties of whose material are described by random func-
tions of curvilinear coordinates of the middle surface.

Assuming, for the sake of simplicity, the material to be incompressible, we write the relationships
between the strains and stresses

1
eij =51+ K)si;  (i,j=1,2)

where
N 4
el KS.“' =34 ‘S' Sij (T) dT, S35 = G35 — 5i]'d7 3o = Sy
[}

G is the shear modulus, A is a constant characterizing the viscosity, t and 7 are time, and éij isaunittensor.

Here and in the following summation is carried out over repeated indices. The index numbers corre-
spond to the coordinates x; and x, which are measured along the lines of curvature of the middle surface.

If the inhomogeneity is small,
16 = A = (A +-BN, A = (4> +pA", (A>, ¢A> = const

(6 is a small parameter), the deflection w and the stress functions & can be found by the method of a small
parameter in the form of a series

w= 2 Brw®, ©= 3 promn @
k=0

k=0

Angle brackets are used to note averaging over a set of realizations.
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We assume that the middle surface of the shell has small initial deviations from the idealformw,=gw,.
Confining ourselves to the first approximation in the expansion (1), we write the equations determining w®
and @) in the case of a thin shallow shell:

D4 (w® — wy) = (1 + (K)) j:(vzq)(l)(s” — Wy _ﬁ__ + (V2@(0)§ (D(o))) wm
i

2.¢AY (L -+ () VOO 2L () — ), 1y + 2)
+ —Gé“(wm —~ o)y = — M1 & K) (2(1)“ - (D(O) 1), 22 ~
— A+ K)(— (I’(Oz)z + 209 D,u—6A({14K) (D(lz], 12

where
i
CKyWAQ® = 3 %}W@m @dr, T=hNA2,  D=4lKhy
1]

Ry; and Ry, are the radii of the curvatures (1/Ryy=1/Ky =0).

For a homogeneous momentiess state (for k=0 @‘0) =const) the second one of these relationships is
simplified,

2<k> 1+ <Ky Vio® I

(w(l) — W), +

+ '1}"1'1' (w® — wy), 93 = — (l -+ A'K) 22 (ZCD(Oz)a —OC) ~

~ (M AK), 33 (— Oy + 20%) — 6 (A 4 AK), ,, B, @)
We assume that the scales vary and the correlation functions A' and A' are small in comparison with

the characteristic dimensions of the middle surface, and that the functions themselves are homogeneous.
Then they can be represented by the stochastic Fourier—Stieltjes integrals [4]

A (x) = f evxdly (w), A (x)= _f exdZ 4 (0), OT = 0%, + Oy,

The functions Zy (w) and ZA () satisfy the conditions

A2y (®) dZy* (")) = Si(w) & (v — o) dodw’
<AZ 4 (0)dZ 4* (0')) = S4(0) 8 (0 — 0') doda’

Here 8 (w—w') is a two-dimensional delta function; S (w) and SA (w) are the spectral densities of the
random functions A'(x) and A'(x). An asterisk is used to denote transition to complex conjugate quantities.

If the fields of A'(x), A'(x) are not only homogeneous but also homogeneously connected, then
(<dZn (@) dZ4* (@) = Spa (0) 8 (0 — o) dode’

The solution of Egs. (2) and (3) is given by the expressions

Wl = v (@, 1)+ [ eha(©)dZa) + | o (0) 2y (0)
DO = f(z, 1) + f x4 (@) dZ 4 (0) + f 5, (@) dZy () )

where

4 ©) = rrrraer (7 + ) o0 [~ ] -1

__BW o AT (W)
Py, (@) T2 atw ( R + Rn} exp [ > ]

———-—~——~—-—«—~—B — 3¢4 3¢A

Qa(w) = 5 (Wi?ik '2)2{1 b (w) eXp [._, _A_ﬁ_:ﬂ).tJ — M- B ()] exp( <}»>> t)}
S B 3<¢A - 3¢A

® @) =775 (mx(ﬂ— @ { (1 —p(@)exp (’-’7%»% t) t”m) b (©) oxp l . <;«>'r =X J}

B{w) = o,? (2(])502)2 - (pfol)l) + oy? ('- (I)fogz + 2(1)501)1) + 6(D10)2®f01)z

g .
a®) = D(0,® + o)+ 7%;(%2- +.,%.)g + (02 40,2 0,0; (VEOVS,; — D)
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7(0) = (02 + 0,9 0,0; (V2OUS,; — DY) a7 ()
= 3 o | oy
b ) = G @ree (R T )

where v(x,t), {(x,t) are the deflection and the stressfunctionswhich correspond to the initial deflection w,.

The relationships just presented have meaning for values of q and t which are less than the critical
values for the viscoelastic constants <x>and<A>.

The correlation functions of flexure and stress functions, Ky, (%, x') and K4 (x,x'), have the form

K, (x,z')=Re S elo @5 (@) do, Ko(r,7') =Re 5. eie 8¢ () dua,

—oa ——00

where Sy (w), S (w) are the spectral densities of the functions w ), & (x).
Sy (©) = P4* () S4 (©) -+ Da (@) Yo () [San (@) + Saa(®)] + $a° (@) Sx (0)
So (@) = 94* (©) S4 (0) + @4 (©) P2 (0) [Sax (©) + Sra (©)] + ¢a? (@) Sa (@)

To determine the critical time, we consider the perturbed motion of the shell. The perturbation ow
of the deflection and 6&® of the stress function are found from the equations
41 [GV%w' + 26, ;92w 5 + G, 15 (Bw, 35 + 8,5 20w")] —
= (V8 — @, ) 8, (10,45 + ) (V2008 — 8D, i = .. 6)
1

2ATAD" - 4, V28D, LA 45 (30D, 45 — 28WD'S,;) -+ 6k (7‘117; Sw, g +
»1 . . . .
+ g dw, 1+ w, 10w, 5y + w, 200w, 11 — 2w, 1,00, 1) = . ..

In the right sides of these equations we have guantities which do not depend on éw" and 6&°.

The critical time is obtained from the condition that the velocities 6w and 66" increase without bounds
[5]. This in the given case gives the same result as the bifurcation criterion of the equilibrium position [2].

As an example, we calculate the probabilistic characteristics of the critical time for a cylindrical
shell of radius R, compressed along the generator by a load q. Let the elastic constant A (or G) be deter-
ministic, while the viscosity parameter A be a homogeneous random function only of the x; coordinate (x;
is measured along the generator). The shell has an initial deflection wy=v, sinz-,rmxi/l (I is thelength of
the shell).

The expressions (4) in this case assume the form

R 1 T [ E<CA>ya,
W (@) = vsin® Ga + g [ o g [ — exp (1) [dZa(m)
—0 " w

T m

o0
g ma 1 , g me £ha, [ B4 .
OP (z,) = f sin® -, + SRS S giores {_unT (1 —e Bt — s Lexp ( T Ot ) — BB AZ, (0)
where

- vo E (A
U= p— exp(i_am Ol

Am2n2 BBRE -1 Y Enr 1
A = 9[ 72 D+ 4m3n232] y O ={¢ I_Dm12 + _RE‘(B'IT} , E=3G

v

P
' = ZImiR

To obtain the equations for the critical time t,, we specify the functions éw and 6& (the boundary con-
ditions are satisfied in the mean)

mit
1

. n . mn -
ysin -2y, 8@ = dsin —~z; sin

n

Sw == esin 7

Ty

Egs. (5) are solved by the Galerkin—Kantorovich method, assuming w~w®, 8 ~8® +6W®  The crit-
ical time is found from the condition that the determinant

§ —-pv=A
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conéisting of the coefficients of ¢’ and d, where

k=06 mn? mintER ; min? nEi-2 mitt
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Here we have omitted the terms which contain products of small quan-
tities.

In the first approximation the critical time can be represented as the sum t, =¢,+tj. Eachoftheterms

is found from the equations

1—
=), L= &TOT)T’ A (%)

It is obvious that<ty >~t; while the variance D(t;) equals

1 —a,,)n%h 1 — cos @il
D) = [ o, <A B% J 5 Bl (1 — Pog/amend)? X
x ['E?_h (1 — e Earty 1 R:“' . [e—E<A>t exp( £ d«mt)] -+
o 22\~ E <A 28y (“’1)
+ —m (1 e ____m;zm) [1 — exp( — %t)] (AT }dm1 6)

We take the correlation function 6f the random function A'(xy) in the form
K g (2 — =) = Q% # (wr=y)

The spectral density for it is represented in the following manner:

S (o)) =~ prauie
1 9 -V'

s

We rewrite the expression (6) for the small quantities E<A >t, E<A > (1-aw)'1awt

_ Vi fo \2 ¢ 63(1—cos2mB) . [6°—3p(k+ 2 w62
D) =T (5 m) [ Ta e X o ox® (— T ) 49 ™
Here
Loy 3 g R
b= P=Zam: E-EE
2 n22 -3

8 = TRk (1 + m“n2H2)
When deriving Eq. (7) we assumed that the condition
nl/ maoR =1

was fulfilled.

We put g=1/3. This value corresponds to the minimum value of the critical load for the shell in the

linear formulation.

The results of the calculation of the variance D(t)) for m=5, Is=20 are showninFig. 1 as a function of

the quantity p for various k. As is seen from the figure in which
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the relative deviation of the critical time D(t;)/t; can be of the same order as Q/<A >, and to a large extent
depends on the value of the acting compressive load.
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